如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB.E是BC上的一点,以EC为直径的⊙O经过点D。求证:AB是⊙O的切线;若CD的弦心距为1,BE=ED.求BD的长.
有三组数如下:(1)1,3,,;(2)3,2,6,3;(3),,,.其中哪些组能成比例?哪些不能?若能,请各写出一个比例式子.
在半径为27m的广场中央,点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图),求光源离地面的垂直高度SO.(精确到0.1m;=1.44,=1.732,=2.236,以上数据供参考)
小明要在半径为1m,圆心角为60°的扇形铁皮上剪取一块面积尽可能大的正方形铁皮.小明在扇形铁皮上设计了如图所示的甲、乙两种方案剪取所得的正方形的面积,并计算哪个正方形的面积较大?(估算时取1.73,结果保留两个有效数字)
如图,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC,求:(1)被剪掉的阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆半径是多少?(结果可用根号表示)
如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头重合部分,那么这座粮仓实际需用油毡的面积是多少?