给出问题:已知满足,试判定的形状.某学生的解答如下:解:(i)由余弦定理可得,,,,故是直角三角形.(ii)设外接圆半径为.由正弦定理可得,原式等价于,故是等腰三角形.综上可知,是等腰直角三角形.请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果. .
在轴上的截距为2且斜率为1的直线方程为 .
P是双曲线的右支上一动点,M、N分别是圆和上的动点,则的最大值为
在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形, 按图所标边长,由勾股定理有: 设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O—LMN,如果用表示三个侧面面积,表示截面面积,那么你类比得到的结论是
已知函数,则它的单调递增区间是