如图,在Rt△ABC中,∠C=90°,AB=10cm,AC∶BC=4∶3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动求AC、BC的长;设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式;当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为顶点的三角形与△ABC是否相似,请说明理由;
在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上.若BC=8cm,AD=6cm,且PN=2PQ,求矩形PQMN的周长.
已知水池的容量一定,当每小时的灌水量为q=3米3时,灌满水池所需的时间为t=12小时.(1)写出灌水量q与灌满水池所需的时间t的函数关系式;(2)求当灌满水池所需8小时时,每小时的灌水量.
如图,在的正方形网格中,△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).(1)以点O(0,0)为位似中心,按比例尺(OA︰OA’)1:3在位似中心的同侧将△OAB放大为△OA’B’,放大后点A、B的对应点分别为A’、B’ .画出△OA’B’,并写出点A’、B’的坐标:A’( ),B’( );(2)在(1)中,若为线段上任一点,写出变化后点的对应点的坐标( ).
解分式方程:
先化简:,再从不等式组的整数解中选择一个恰当的x值代入并求值.