在某市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理. 已知运往D地的数量比运往E地的数量的2倍少l0立方来.求运往D、E两地的数量各是多少立方米?若A地运往D地立方米(为整数), B地运往D地30立方米. C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地.且C地运往E地不超过 l2立方米.则A、C两地运往D、E两地有哪几种方案?
如图,线段AB=14cm,C是AB上一点,且AC=9cm,O为AB的中点,求线段OC的长度.
如图是由7个相同的小立方体组成的几何体,请画出它的三视图
化简或求值:(1)化简:(2)先化简,再求值:,其中
计算题:(1) (2)(3)
如图,已知,AB=AC,过点A作AG⊥BC,垂足为G,延长AG交BM于D,过点A做AN∥BM,过点C作EF∥AD,与射线AN、BM分别相交于点F、E。(1)求证:△BCE∽△AGC;(2)点P是射线AD上的一个动点,设AP=x,四边形ACEP的面积是y,若AF=5,。①求y关于x的函数关系式,并写出定义域;②当点P在射线AD上运动时,是否存在这样的点P,使得△CPE的周长为最小?若存在,求出此时y的值,若不存在,请说明理由。