如图①,△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A顺时针旋转,当DF边与AB边重合时,旋转中止,不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图②问:始终与△AGC相似的三角形有_______及_______设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由)问:当x为何值时,△AGH是等腰三角形?
黄商超市以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件.超市为增加销售量,决定降价销售,根据市场调查,单价第降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,超市将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元. (1)完成下表(不化简)
(2)如果超市希望通过销售这批T恤获利9000元,那么第二个月的单价是多少元?
解下列方程(1)4x²-4x+1=0 (2)(3x+2)²=(5-2x)²
已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在轴上,直角顶点A在轴的正半轴上,A(0,2),B(-1,0)。 (1)求点C的坐标并求过A、B、C三点的抛物线的解析式 (2)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.; (3)在抛物线的对称轴上是否存在点Q,使△QAC是以AC为腰的等腰三角形?如果存在,直接写出Q点的坐标;如果不存在,请说明理由;
如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长,与BC的延长线交于点F,BD=BF. (1)求证:AC是⊙O的切线; (2)若BC=12,AD=8,求的长.
已知一元二次方程的一根为2. (1)求关于的关系式; (2)若,求方程的另一根; (3)求证:抛物线与轴有两个交点.