如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为,点A、D的坐标分别为(-4,0),(0,4). 动点P从A点出发,在AB边上匀速运动. 动点Q从点B出发,在折线BCD上匀速运动,速度均为每秒1个单位长度. 当其中一个动点到达终点时,另一动点也停止运动. 设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ的动点除外).求出点C的坐标求S随t变化的函数关系式;当t为何值时,S有最大值?并求出这个最大值
已知:关于的方程. (1)若方程有两个相等的实数根,求的值,并求出这时的根. (2)问:是否存在正数,使方程的两个实数根的平方和等于136;若存在,请求出满足条件的值;若不存在,请说明理由.
某百货大搂服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件. (1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元? (2)用配方法说明:要想盈利最多,每件童装应降价多少元?
阅读下面的例题,请参照例题解方程. 例:解方程 解:(1)当≥0时,原方程化为, 解得:(不合题意,舍去). (2)当<0时,原方程化为, 解得:(不合题意,舍去). ∴原方程的根是. 解方程
如图,四边形ABCD、DEFG都是正方形,连接AE、CG、AE与CG相交于点M,CG与AD相交于点N. 求证:(1); (2)
先化简,再求值:,其中