如图,直线交直线于轴上一点,交轴上另一点,交轴于另一点,二次函数(>0)的图像过点、两点,点是线段上由向移动的动点,线段(1<<8)。⑴为何值时,为圆心为半径的圆与相切;⑵设抛物线对称轴与直线相交于点,请在轴上求一点,使的周长最小;⑶设点是上由向移动的一动点,且,若的面积为,求与的函数关系式,当为等腰三角形时,请直接写出的值。
(乐山)如图1,二次函数的图象与轴分别交于A、B两点,与轴交于点C.若tan∠ABC=3,一元二次方程的两根为-8、2. (1)求二次函数的解析式; (2)直线绕点A以AB为起始位置顺时针旋转到AC位置停止,与线段BC交于点D,P是AD的中点. ①求点P的运动路程; ②如图2,过点D作DE垂直轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在运动过程中,∠EPF的大小是否改变?请说明理由; (3)在(2)的条件下,连结,求△PEF周长的最小值.
如图,一次函数的图象与反比例函数()在第一象限的图象交于A(1,n)和B两点. (1)求反比例函数的解析式; (2)在第一象限内,当一次函数的值大于反比例函数()的值时,写出自变量x的取值范围.
如图,已知抛物线()与y轴交于点C,与x轴交于点A(1,0)和点B. (1)求抛物线的解析式; (2)求直线BC的解析式; (3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.
(攀枝花)如图,已知一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点. (1)求一次函数与反比例函数的解析式; (2)求△COD的面积; (3)直接写出时自变量x的取值范围.
(攀枝花)如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒. (1)当t=5时,请直接写出点D、点P的坐标; (2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围; (3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.