如图,梯形 A B C D 中, A B ∥ C D , E , F 是线段 A B 上的两点,且 D E ⊥ A B , A B = 12 , A D = 5 , B C = 4 2 , D E = 4 .现将△ ∆ A D E , ∆ C F B 分别沿 D E , C F 折起,使两点 A , B 重合于点 G ,得到多面体 C D E F G .
(1)求证:平面 D E F ⊥ 平面 C F G ;
(2)求多面体 C D E F G 的体积
如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3 ,AB=5,求的值.
先化简,再求值: ,其中x满足.
解方程:-= 2.
计算:
给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点. (1)点A的坐标为,则点和射线OA之间的距离为________,点和射线OA之间的距离为________; (2)如果直线和双曲线之间的距离为,那么k= ;(可在图1中进行研究) (3)点E的坐标为(1,),将射线OE绕原点O逆时针旋转60°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M. ①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示) ②将射线OE,OF组成的图形记为图形W,抛物线与图形M的公共部分记为图形N,请直接写出图形W和图形N之间的距离.