如图,从 A 1 ( 1 , 0 , 0 ) , A 2 ( 2 , 0 , 0 , B 1 ( 0 , 1 , 0 ) , B 2 ( 0 , 2 , 0 ) , C 1 ( 0 , 0 , 1 ) , C 2 ( 0 , 0 , 2 ) ,这6个点中随机选取3个点。
(Ⅰ)求这3点与原点 O 恰好是正三棱锥的四个顶点的概率;
(Ⅱ)求这3点与原点 O 共面的概率。
已知函数,(1)求函数的单调递增区间;(2)若不等式在区间(0,+上恒成立,求的取值范围;(3)求证:
设,其中.(1)若有极值,求的取值范围;(2)若当,恒成立,求的取值范围.
已知数列的通项公式为(1)试求的值;(2)猜想的值,并用数学归纳法证明你的猜想.
一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个球,红球个数不少于白球个数的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7的取法
已知函数,其图像在点处的切线为.(1)求、直线及两坐标轴围成的图形绕轴旋转一周所得几何体的体积;(2)求、直线及轴围成图形的面积.