袋子中装有大小形状完全相同的m个红球和n个白球,其中m,n满足m>n≥2且m+n≤l0(m,n∈N+),若从中取出2个球,取出的2个球是同色的概率等于取出的2个球是异色的概率.(Ⅰ) 求m,n的值;(Ⅱ) 从袋子中任取3个球,设取到红球的个数为,求的分布列与数学期望.
定义在上的函数满足:对任意、恒成立,当时,. (1)求证在上是单调递增函数; (2)已知,解关于的不等式; (3)若,且不等式对任意恒成立.求实数的取值范围.
设函数 (1)求证:是奇函数,在区间上是单调递减函数; (2)若对任意恒成立,求实数的取值范围.
已知关于的不等式的解集是,函数的定义域是,若.求实数的取值范围.
已知二次函数满足:(1)关于的方程的两实根是. (1)求的解析式; (2)设,且在区间上是单调函数,求实数的取值范围.
计算:(1)其中 (2)