如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为E,点F在BD上,连接AF、EF.求证:DA=DE;如果AF∥CD,求证:四边形ADEF是菱形.
如图, AB 、 AC 分别是 ⊙ O 的直径和弦, OD ⊥ AC 于点 D .过点 A 作 ⊙ O 的切线与 OD 的延长线交于点 P , PC 、 AB 的延长线交于点 F .
(1)求证: PC 是 ⊙ O 的切线;
(2)若 ∠ ABC = 60 ° , AB = 10 ,求线段 CF 的长.
如图,为了测量山坡上一棵树 PQ 的高度,小明在点 A 处利用测角仪测得树顶 P 的仰角为 45 ° ,然后他沿着正对树 PQ 的方向前进 10 m 到达点 B 处,此时测得树顶 P 和树底 Q 的仰角分别是 60 ° 和 30 ° ,设 PQ 垂直于 AB ,且垂足为 C .
(1)求 ∠ BPQ 的度数;
(2)求树 PQ 的高度(结果精确到 0 . 1 m , 3 ≈ 1 . 73 ) .
某种型号汽车油箱容量为 40 L ,每行驶 100 km 耗油 10 L .设一辆加满油的该型号汽车行驶路程为 x ( km ) ,行驶过程中油箱内剩余油量为 y ( L ) .
(1)求 y 与 x 之间的函数表达式;
(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的 1 4 ,按此建议,求该辆汽车最多行驶的路程.
有2部不同的电影 A 、 B ,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择 A 电影的概率;
(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).
如图,在 ▱ ABCD 中,点 E 、 F 分别在边 CB 、 AD 的延长线上,且 BE = DF , EF 分别与 AB 、 CD 交于点 G 、 H .求证: AG = CH .