如图,将□OABC放置在平面直角坐标系xOy内,已知AB边所在直线的解析为:y = − x + 4.点C的坐标是( ▲ , ▲ )若将□OABC绕点O逆时针旋转90°得OBDE,BD交OC于点P,求△OBP的面积;在(2)的情形下,若再将四边形OBDE沿y轴正方向平移,设平移的距离为x(0≤x≤8),与□OABC重叠部分面积为S,试写出S关于x的函数关系式,并求出S的最大值.
关于的一元二次方程有实数解. (1)求k的取值范围; (2)如果且k为整数,求k的值.
解方程 (1); (2)3(x-2)2=x(x-2)
如图,直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P. (1)求该抛物线的解析式; (2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F. (1)求证:DF⊥AC; (2)若⊙O的半径为8,∠CDF=22.5°,求阴影部分的面积.
为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200. (1)求利润S(元)与销售单价x(元)之间的关系式; (2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?