在中,,分别是角所对边的长,,且(1)求的面积;(2)若,求角C.
如图.在直棱柱 A B C - A 1 B 1 C 1 中, ∠ B A C = 90 ° , A B = A C = 2 , A A 1 = 3 , D 是 B C 的中点,点E在菱 B B 1 上运动
(1)证明: A D ⊥ C 1 E ; (2)当异面直线 A C , C 1 E 所成的角为 60 ° 时,求三棱锥 C 1 - A 1 B 1 E 的体积
已知函数 f x = cos x · cos x - π 3
(1)求 f 2 π 3 的值; (2)求使 f x < 1 4 成立的 x 的取值集合
设函数 f x = x 3 - k x 2 + x x ∈ R . (1) 当 k = 1 时,求函数 f x 的单调区间; (2) 当 k < 0 时,求函数 f x 在 k , - k 上的最小值 m 和最大值 M .
已知抛物线 C 的顶点为原点,其焦点 F 0 , c c > 0 到直线 l : x - y - 2 = 0 的距离为 3 2 2 .设 P 为直线 l 上的点,过点 P 作抛物线 C 的两条切线 P A , P B ,其中 A , B 为切点. (1) 求抛物线 C 的方程; (2) 当点 P x 0 , y 0 为直线 l 上的定点时,求直线 A B 的方程; (3) 当点 P 在直线 l 上移动时,求 A B · B F 的最小值.
设各项均为正数的数列 a n 的前 n 项和为 S n ,满足 4 S n = a n + 1 2 - 4 n - 1 , n ∈ N * ,且 a 2 , a 5 , a 14 构成等比数列. (1) 证明: a 2 = 4 a 1 + 5 ; (2) 求数列 a n 的通项公式; (3) 证明:对一切正整数 n ,有 1 a 1 a 2 + 1 a 2 a 3 + . . . + 1 a n a n + 1 < 1 2 .