已知函数的导数满足,,其中常数,求曲线在点处的切线方程.
(本小题8分)如图,在直三棱柱 中,AB=AC,D、E分别是棱BC、 上的点(点D不在BC的端点处),且ADDE,F为 的中点. (1)求证:平面ADE平面; (2)求证:平面ADE.
(本小题8分)根据下列条件写出直线的方程,并且化成—般式 (1)经过点 且倾斜角 ; (2)经过点A(-1,0)和B(2,-3).
(本小题6分)如图,已知—正三棱锥P- ABC的底面棱长AB=3,高PO= ,求这个正三棱锥的表面积.
(本小题满分14分)已知函数. (1)求的定义域; (2)在函数的图像上是否存在不同的两点,使过此两点的直线平行于轴; (3)当满足什么关系时,在上恒取正值.
(本小题满分12分) 某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若最初时含杂质2%,每过滤一次可使杂质含量减少,问至少应过滤几次才能使产品达到市场要求? (已知,)