已知数列 a n 的各项均为正数,记 A n = a 1 + a 2 + a 3 + . . . + a n , B n = a 2 + a 3 + . . . + a n + 1 , C n = a 3 + a 4 + . . . + a n + 2 , n = 1 , 2 , …… (1)若 a 1 = 1 , a 2 = 5 ,且对任意 n ∈ N ﹡,三个数 A n , B n , C n 组成等差数列,求数列 a n 的通项公式. (2)证明:数列 a n 是公比为q的等比数列的充分必要条件是:对任意 n ∈ N + ,三个数 A n , B n , C n 组成公比为 q 的等比数列.
已知{an}为等差数列,且a3=-6,a6=0.(1)求{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.
等差数列中,是其前项和,,求:及.
(1)求b的值(2)求sinC的值
(附加题)本小题满分10分已知是定义在上单调函数,对任意实数有:且时,.(1)证明:;(2)证明:当时,;(3)当时,求使对任意实数恒成立的参数的取值范围.
本小题满分10分已知二次函数(其中).(1)若函数为偶函数,求的值;(2)当为偶函数时,若函数,指出在上单调性情况,并证明之.