已知数列 a n 的各项均为正数,记 A n = a 1 + a 2 + a 3 + . . . + a n , B n = a 2 + a 3 + . . . + a n + 1 , C n = a 3 + a 4 + . . . + a n + 2 , n = 1 , 2 , …… (1)若 a 1 = 1 , a 2 = 5 ,且对任意 n ∈ N ﹡,三个数 A n , B n , C n 组成等差数列,求数列 a n 的通项公式. (2)证明:数列 a n 是公比为q的等比数列的充分必要条件是:对任意 n ∈ N + ,三个数 A n , B n , C n 组成公比为 q 的等比数列.
已知函数(为常数,). (Ⅰ)当时,求函数在处的切线方程; (Ⅱ)当在处取得极值时,若关于的方程在[0,2]上恰有两个不相等的实数根,求实数的取值范围; (Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围.
以下是有关椭圆的两个问题: 问题1:已知椭圆,定点A(1, 1),F是右焦点,P是椭圆上动点,则有最小值; 问题2:已知椭圆,定点A (2, 1),F是右焦点, P是椭圆上动点,有最小值; (Ⅰ)求问题1中的最小值,并求此时P点坐标; (Ⅱ)试类比问题1,猜想问题2中的值,并谈谈你作此猜想的依据.
如图,底面为菱形的四棱锥P-ABCD中,∠ABC=60°,AC="1," PA="2," PB=PD=,点M是PD的中点. (Ⅰ)证明:PA⊥平面ABCD; (Ⅱ)若AN为PD边的高线,求二面角M-AC-N的余弦值.
在直角坐标系xOy中,直线的参数方程为(为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为ρ=2sinθ. (Ⅰ)求圆C的直角坐标方程; (Ⅱ)设圆C与直线交于点A,B.若点的坐标为(3,),求与.
已知A、B是椭圆与坐标轴正半轴的两交点,在第一象限的椭圆弧上求一点P,使四边形OPAB的面积最大.