已知数列 a n 的各项均为正数,记 A n = a 1 + a 2 + a 3 + . . . + a n , B n = a 2 + a 3 + . . . + a n + 1 , C n = a 3 + a 4 + . . . + a n + 2 , n = 1 , 2 , …… (1)若 a 1 = 1 , a 2 = 5 ,且对任意 n ∈ N ﹡,三个数 A n , B n , C n 组成等差数列,求数列 a n 的通项公式. (2)证明:数列 a n 是公比为q的等比数列的充分必要条件是:对任意 n ∈ N + ,三个数 A n , B n , C n 组成公比为 q 的等比数列.
已知函数. (Ⅰ)若a=1,求函数f(x)的极值; (Ⅱ)若f(x)在[1,+∞)内为单调增函数,求实数的取值范围; (Ⅲ)对于,求证:.
已知函数对一切、都有:,并且当时,. (1)判定并证明函数在上的单调性; (2)若,求不等式的解集.
如图,四棱锥中,底面是矩形,底面,,点是侧棱的中点. (Ⅰ)证明:平面; (Ⅱ)若,求二面角的余弦值.
设,. (Ⅰ)化简集合; (Ⅱ)若,求实数的取值范围.
已知:关于的方程有两个不相等的负实根;:关于的不等式的解集为. 若为真,为假,求实数的取值范围.