如图,∠1=∠2=∠B,EF//AB.观察猜想:∠3和∠C有什么数量关系?对观察猜想的结论给出证明.
解方程: x 2 - 2 x - 3 = 0 .
计算 ( a - 1 + 1 a + 1 ) ÷ a 2 + 2 a a + 1 .
(1)如图1,点为矩形对角线上一点,过点作,分别交、于点、.若,,的面积为,的面积为,则 ;
(2)如图2,点为内一点(点不在上),点、、、分别为各边的中点.设四边形的面积为,四边形的面积为(其中,求的面积(用含、的代数式表示);
(3)如图3,点为内一点(点不在上),过点作,,与各边分别相交于点、、、.设四边形的面积为,四边形的面积为(其中,求的面积(用含、的代数式表示);
(4)如图4,点、、、把四等分.请你在圆内选一点(点不在、上),设、、围成的封闭图形的面积为,、、围成的封闭图形的面积为,的面积为,的面积为,根据你选的点的位置,直接写出一个含有、、、的等式(写出一种情况即可).
在平面直角坐标系中,把与轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线的顶点为,交轴于点、(点在点左侧),交轴于点.抛物线与是“共根抛物线”,其顶点为.
(1)若抛物线经过点,求对应的函数表达式;
(2)当的值最大时,求点的坐标;
(3)设点是抛物线上的一个动点,且位于其对称轴的右侧.若与相似,求其“共根抛物线” 的顶点的坐标.
筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为的筒车按逆时针方向每分钟转圈,筒车与水面分别交于点、,筒车的轴心距离水面的高度长为,筒车上均匀分布着若干个盛水筒.若以某个盛水筒刚浮出水面时开始计算时间.
(1)经过多长时间,盛水筒首次到达最高点?
(2)浮出水面3.4秒后,盛水筒距离水面多高?
(3)若接水槽所在直线是的切线,且与直线交于点,.求盛水筒从最高点开始,至少经过多长时间恰好在直线上.
(参考数据:,,