如图,A、B两个转盘均被平均分成三个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.小敏分别转动两个转盘, 当两个转盘停止后,小敏把A转盘指针所指区域内的数字记为,B转盘指针所指区域内的数字记为.这样就确定了点P的坐标.(1)用列表或画树状图的方法写出点P的所有可能坐标;(2)求点P落在坐标轴上的概率.
(11·西宁)(本小题满分8分)国家教育部规定“中小学生每天在校体育活动时间不少于1小时”.西宁市某中学为了了解学生体育活动的情况,随机抽查了520名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”.以下是根据所得的数据制成的统计图的一部分. 根据以上信息,解答下列问题: (1)随机抽查的学生中每天在校锻炼时间超过1小时的人数是_▲; (2)请将图14补充完整; (3)2011年我市初中应届毕业生约为11000人,请你估计今年全市初中应届毕业生中每天锻炼时间超过1小时的学生约有多少人?
11·西宁)(本小题满分8分)如图12 ,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD. (1)求证:四边形AODE是菱形; (2).若将题设中“矩形ABCD”这一条件改为“菱形ABCD”, 其余条件不变,则四边形AODE是_▲.
(11·西宁)(本小题满分7分)给出三个整式a2,b2和2ab. (1)当a=3,b=4时,求a2+b2+2ab的值; (2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写也你所选的式子及因式分解的过程.
如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).27 ⑴求抛物线的解析式及顶点D的坐标; ⑵判断△ABC的形状,证明你的结论; ⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E. ⑴求证:点D是AB的中点; ⑵判断DE与⊙O的位置关系,并证明你的结论; ⑶若⊙O的直径为18,cosB =,求DE的长.