“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.写出转动一次转盘获得45元购书券的概率;转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由.
如图,已知数轴上有A、B、C三个点,它们表示的数分别是,,.(1)填空:AB= ,BC= ;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动. 试探索:BC―AB的值是否随着时间的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动. 设点P移动的时间为秒,试用含的代数式表示P、Q两点间的距离.
如图1,已知AC∥BD,点P是直线AC、BD间的一点,连结AB、AP、BP,过点P作直线MN∥AC.(1)填空:MN与BD的位置关系是 ;(2)试说明∠APB=∠PBD +∠PAC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.
如图,长方形ABCD被分成六个小的正方形,已知中间一个小正方形的边长为2,其它正方形的边长分别为.观察图形并探索:(1)填空: , ;(用含的代数式表示) (2)求的值.
如图,直线AB与CD相交于点O,∠AOC=50°,OE平分∠AOD,OF平分∠BOD.(1)填空:∠BOD= 度;(2)试说明OE⊥OF.
如图,在方格纸中,我们把每个小正方形的顶点称为格点,已知点A、B、C都在格点上,且每个小正方形的边长都为1.(1)画线段AB,并过点C作CD⊥AB,垂足为点D;(2)连结AC、BC.①求△ABC的面积;②已知AB=5,求(1)中线段CD的长.