某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量 y(件)与销售单价x (元)符合一次函数y= ,若该商场获得利润为w 元,试写出利润w 与销售单价x 之间的关系式;销售单价x定为多少元时,商场可获得最大利润,最大利润是多少元?若该商场获得利润不低于500元,试确定销售单价的范围.
已知:如图,在△ABC中,∠A=30°, tanB=,AC=18,求BC、AB的长.
已知二次函数的图象如图所示,它与x轴的一个交点的坐标为(-1,0),与y轴的交点坐标为(0,-3).(1)求此二次函数的解析式;(2)求此二次函数的图象与x轴的另一个交点的坐标;(3)根据图象回答:当x取何值时,y<0?
已知反比例函数的图象经过点A(1,3). (1)试确定此反比例函数的解析式;(2)当=2时, 求y的值; (3)当自变量从5增大到8时,函数值y是怎样变化的?
已知:如图,AB是⊙O的直径,CD是⊙O的弦, 且AB⊥CD,垂足为E,联结OC, OC=5.(1)若CD=8,求BE的长;(2)若∠AOC=150°, 求扇形OAC的面积.
已知二次函数.(1)将化成y ="a" (x - h) 2 + k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?