已知:在△ABC中,AB=AC,∠B=30°,BC=6,动点P以每秒个单位从点B出发沿线段BA、AC运动,过点P作边长为3的等边△FDE,使得点D在线段BC上,点E在线段DC上.如图(1),当EF经过点A时,动点P运动时间t为多少?设点P运动t秒时,△ABC与△DEF重叠部分面积为S,求S关于t的函数关系式如图(2),在点P的运动过程中,是否存在时间t,使得以点P为圆心,AP为半径的圆与△FDE三边所在的直线相切.如果存在,请直接写出t的值;如不存在,说明理由.
某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到 一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计(图 中信息不完整). 已知A、B两组捐款人数的比为1 : 5. 请结合以上信息解答下列问题. (1) a=,本次调查样本的容量是; (2) 先求出C组的人数,再补全“捐款人数分组统计图1”; (3) 若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?
(1)计算:; (2)先化简,再求代数式的值,其中x是不等式组的整数解.
如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论; (3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨. (1)设A地到甲地运送蔬菜x吨,请完成下表:
(2)设总运费为W元,请写出W与x的函数关系式 (3)怎样调运蔬菜才能使运费最少?
如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G. (1)判断直线AG与⊙O的位置关系,并说明理由. (2)求线段AF的长.