有3张扑克牌,分别是红桃3,红桃4和黑桃5,把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张,先后两次抽得的数字分别记为S和t,求的概率甲、乙两人做游戏,现有两种方案:A方案:若两次抽得相同花色则甲胜,否则乙胜,B方案:若两次抽得数字和为奇数则甲胜,否则乙胜;请问甲选择哪种方案胜率较高?
如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.
如图,在正方形网格中,△OBC的顶点分别为O(0,0), B(3,-1)、C(2,1).(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点B、C两点的对应点分别为B′、C′ ,画出△OB′C′,并写出点B′、C′的坐标:B′( , ),C′( , );(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标( , ).
先化简,再求值:,其中.
解方程:
解不等式组,并把解集在数轴上表示出来.