今年“五一”期间,某旅游公司对某条旅游线路推出如下套餐:如果出团人数不超过25人,人均费用500元;如果出团人数超过25人,每增加1人,人均费用降低10元,但人均费用不得低于400元.某单位组织一批员工到该线路参观旅游,如果人均费用想要低于500元,但不低于420元,那么参观旅游的人数在什么范围内?请通过计算说明若该单位已付旅游费用13500元,求该单位安排了多少名员工去参观旅游.
如图①,在四边形 ABCD 中, AB = CD , E , F 分别是 BC , AD 的中点,连接 EF 并延长,分别与 BA , CD 的延长线交于点 M , N ,则 ∠ BME = ∠ CNE .
(温馨提示:在图①中,连接 BD ,取 BD 的中点 H ,连接 HE , HF ,根据三角形中位线定理,证明 HE = HF ,从而 ∠ 1 = ∠ 2 ,再利用平行线性质,可证 ∠ BME = ∠ CNE .)
(1)如图②,在四边形 ADBC 中, AB 与 CD 相交于点 O , AB = CD , E , F 分别是 BC , AD 的中点,连接 EF ,分别交 DC , AB 于点 M , N ,判断 △ OMN 的形状,并给予证明;
(2)如图③,在 △ ABC 中, AC > AB , D 点在 AC 上, AB = CD , E , F 分别是 BC , AD 的中点,连接 EF 并延长,与 BA 的延长线交于 G ,若 ∠ EFC = 60 ∘ ,连接 GD ,判断 △ AGD 的形状并证明.
如图,在 ▱ ABCD 中, ∠ ABC = 75 ∘ , AF ⊥ BC 于 F , AF 交 BD 于 E ,若 DE = 2 AB ,求 ∠ AED 的大小.
设直角三角形的两条直角边长分别为 a , b , 斜边长为 c , 若 a , b , c , 均为正数,且 c = 1 3 ab - a + b ,求满足条件的直角三角形的个数.
设 a , b , c , d 为正实数, a < b , c d , bc ad ,有一个三角形的三边长分别为 a 2 + c 2 , b 2 + d 2 , ( b - a ) 2 + ( d - c ) 2 ,求此三角形的面积.
几何模型:
条件:如图①, A , B . 是直线 l 同旁的两个定点
问题:在直线 l 上确定一点 P ,使 PA + PB 的值最小.
方法:作点 A 关于直线 l 的对称点 A ' ,连接 A ' B 交 l 于点 P ,则 PA + PB = A ' B 的值最小(不必证明).
模型应用:
(1)如图②,正方形 ABCD 的边长为 2 , E 为 AB 的中点, P 是 AC 上一动点.连接 BD ,由正方形对称性可知, B 与 D 关于直线 AC 对称.连接 ED 交于 AC 于 P ,则 PB + PE 的最小值是_____;
(2)如图③, ∠ AOB = 45 ° , P 是 ∠ AOB 内一点, PO = 10 , Q , R 分别是 OA , OB 上的动点,求 △ PQR 周长的最小值.