已知二次函数(1)求证:无论a为任何实数,二次函数的图象与x轴总有两个交点.(2)当x≥2时,函数值随的增大而减小,求的取值范围.(3)以二次函数图象的顶点为一个顶点作该二次函数图象的内接正三角形(M,N两点在二次函数的图象上),请问:△的面积是与a无关的定值吗?若是,请求出这个定值;若不是,请说明理由.
如图,在平面直角坐标系中,梯形ABCD的顶点坐标分别为A,B,,D,将梯形ABCD绕点D逆时针旋转90°得到梯形. (1)在平面直角坐标系中画出梯形A1B1C1D,则的坐标为,的坐标为,的坐标为; (2)点C旋转到点的路线长为(结果保留).
如图,点B和点C分别为∠MAN两边上的点,AB=AC. (1)按下列语句画出图形: ① AD⊥BC,垂足为D; ② ∠BCN的平分线CE与AD的延长线交于点E ③ 连结BE. (2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:≌,≌;并选择其中的一对全等三角形予以证明.
计算:
如图,在直角梯形中,∥,,点为坐标原点,点在轴的正半轴上,对角线,相交于点,,. (1)线段的长为,点的坐标为; (2)求△的面积; (3)求过,,三点的抛物线的解析式; (4)若点在(3)的抛物线的对称轴上,点为该抛物线上的点,且以,,,四点为顶点的四边形为平行四边形,求点的坐标.
为的直径,为弦,且,垂足为. (1)如果的半径为4,,求的度数; (2)若点为的中点,连结,.求证:平分; (3)在(1)的条件下,圆周上到直线距离为3的点有多少个?并说明理由.