已知抛物线:(),焦点为,直线 交抛物线于、两点,是线段的中点,过作轴的垂线交抛物线于点,(1)若抛物线上有一点到焦点的距离为,求此时的值;(2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。
已知单位向量与的夹角是钝角,当时,的最小值为。 (1)若,其中,求的最小值; (2)若满足,求的最大值.
已知,。 (Ⅰ)当时,求和; (Ⅱ)若.求的取值范围.
已知焦点在轴上的椭圆,焦距为,长轴长为. (1)求椭圆的标准方程; (2)过点作两条互相垂直的射线,与椭圆交于两点. ①证明:点到直线的距离为定值,并求出这个定值; ②求.
已知函数在处取得极值. (1)求实数的值; (2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.
已知数列是等差数列,首项,公差为,且成等比数列. (1)求数列的通项公式; (2)令,求数列的前项和.