已知函数对一切实数都有成立,且,(1)求的值;(2)求 的解析式.
设函数. (Ⅰ)判断能否为函数的极值点,并说明理由; (Ⅱ)若存在,使得定义在上的函数在处取得最大值,求实数的最大值.
设正项数列的前项和,且满足. (Ⅰ)计算的值,猜想的通项公式,并证明你的结论; (Ⅱ)设是数列的前项和,证明:.
(Ⅰ)设,求证:; (Ⅱ)设,求证:三数,,中至少有一个不小于2.
已知,函数. (Ⅰ)求的极值(用含的式子表示); (Ⅱ)若的图象与轴有3个不同交点,求的取值范围.
已知函数 (1)求函数在点处的切线方程; (2)求函数单调增区间; (3)若存在,使得是自然对数的底数),求实数的取值范围.