已知一次函数y1 = 2x和二次函数y2 = x2 + 1。求证:函数y1、y2的图像都经过同一个定点;求证:在实数范围内,对于任意同一个x的值,这两个函数所对应的函数值y1 ≤ y2总成立;是否存在抛物线y3 = ax2 + bx + c,其图象经过点(5,2),且在实数范围内,对于同一个x的值,这三个函数所对应的函数值y1 ≤ y3 ≤ y2总成立?若存在,求出y3的解析式;若不存在,说明理由。
如图,将置于平面直角坐标系中,其中点为坐标原点,点的坐标为,. (1)求作的外接圆圆心P,并求出P点的坐标; (2)若⊙P与轴交于点,求点的坐标; (3)若CD是⊙P的切线,求直线CD的函数解析式.
如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90º,再把所得的图像沿x轴正方向平移1个单位,得△CDO. (1)写出点A,C的坐标; (2)求点A和点C之间的距离.
某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,若商场每天要获利润1200元,请计算出每件衬衫应降价多少元?
如图所示,直角梯形中,,,,以所在直线为轴旋转一周,得到一个几何体,求它的全面积.
如图,是的外接圆,点 在上, ,点是垂足,, 连接.(1)求证:是的切线. (2)若的半径为10cm,∠A=600,求CD的长