计算先化简,再求值:(2x+y)2—(2x-y)(2x+y)—4xy;其中x=2009,y=-1.
如图,在□ABCD中,EF∥BD,分别交BC、CD于点P、Q,分别交AB、AD 的延长线于点E、F,BE=BP.(1)若∠E=70度,求∠F的度数.(2)求证:△ABD是等腰三角形.
解方程: .
计算: .
如图1,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB =" 2OA" = 4. (1)求该抛物线的函数表达式; (2)设P是(1)中抛物线上的一个动点,以P为圆心,R为半径作⊙P,求当⊙P与抛物线的对称轴l及x轴均相切时点P的坐标. (3)动点E从点A出发,以每秒1个单位长度的速度向终点B运动,动点F从点B出发,以每秒个单位长度的速度向终点C运动,过点E作EG//y轴,交AC于点G(如图2).若E、F两点同时出发,运动时间为t.则当t为何值时,△EFG的面积是△ABC的面积的?
将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠。(1)如图①,当点O落在AB边上的点D处时,点E的坐标为 ;(2)如图②,当点O落在矩形OABC内部的点D处时,过点E作EG∥轴交CD于点H,交BC于点G.求证:EH=CH;(3)在(2)的条件下,设H(m,n),写出m与n之间的关系式 ;(4)如图③,将矩形OABC变为正方形,OC=10,当点E为AO中点时,点O落在正方形OABC内部的点D处,延长CD交AB于点T,求此时AT的长度。