在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为( )
如图,为估算学校的旗杆的高度,身高1.6米的小红同学沿着旗杆在地面的影子AB由A向B走去,当她走到点C处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m,BC=8m,则旗杆的高度是( )
如图,铁道口的栏杆短臂OA长1m,长臂OB长8m,当短臂外端A下降0.5m时,长臂外端B升高( )
如图,某数学兴趣小组为了估算河的宽度,在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直于PS的直线b的交点R.如果测得QS=4.5m,ST=9m,QR=6m,则河的宽度PQ是( )
小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处竖立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为( )
在相同时刻的物高与影长成正比例,如果高为1.6米的竹竿的影长为2.0米,那么影长为30米的旗杆的高是( )