设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(Ⅰ)求椭圆的离心率;(Ⅱ)D是过三点的圆上的点,D到直线的最大距离等于椭圆长轴的长,求椭圆的方程;(Ⅲ)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.
已知二次函数若对于任意,恒有成立,不等式的解集为A,(1)求集合A;(2)设集合,若集合B是集合A的子集,求的取值范围.
某中学高三年级从甲、乙两个班级各选出七名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,(1)求x和y的值;(2)计算甲班七名学生成绩的方差;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.参考公式:方差其中
已知函数(1)求的单调减区间;(2)在锐角三角形ABC中,A、B、C的对边且满足,求的取值范围.
已知函数,.(I)讨论函数的单调性;(Ⅱ)当时,≤恒成立,求的取值范围.
如图,在轴上方有一段曲线弧,其端点、在轴上(但不属于),对上任一点及点,,满足:.直线,分别交直线于,两点.(Ⅰ)求曲线弧的方程;(Ⅱ)求的最小值(用表示);