设函数,(Ⅰ)求的定义域; (Ⅱ)求的单调增区间和减区间;(Ⅲ)求所有实数,使对恒成立.
已知幂函数,且在上单调递增. (Ⅰ)求实数的值,并写出相应的函数的解析式; (II)若在区间上不单调,求实数的取值范围; (III)试判断是否存在正数,使函数在区间上的值域为. 若存在,求出的值;若不存在,请说明理由
已知函数,且. (Ⅰ)判断的奇偶性并说明理由; (Ⅱ)判断在区间上的单调性,并证明你的结论; (Ⅲ)若在区间上,不等式恒成立,试确定实数的取值范围.
若集合, (Ⅰ)若,求集合; (Ⅱ)若,求实数的取值范围.
计算: (Ⅱ)已知,求的值.
在平面直角坐标系中,已知矩形的长为2,宽为1,边分别在x轴、y轴的正半轴上,点与坐标原点重合(如图4所示),将矩形折叠,使点落在线段上. (Ⅰ)若折痕所在直线的斜率为,试写出折痕所在直线的方程; (Ⅱ)设折痕线段为EF,记,求的解析式.