如图,△ABC中,AD是高,CE是角平分线, AD交CE于点P,已知,∠APE=550,∠AEP=1000,求△ABC的各个内角的度数。
如图, AB 是 ⊙ O 的直径,点 P 是弦 AC 上一动点(不与 A , C 重合),过点 P 作 PE ⊥ AB ,垂足为 E ,射线 EP 交 AC ̂ 于点 F ,交过点 C 的切线于点 D .
(1)求证: DC = DP ;
(2)若 ∠ CAB = 30 ° ,当 F 是 AC ̂ 的中点时,判断以 A , O , C , F 为顶点的四边形是什么特殊四边形?说明理由.
如图,六个完全相同的小长方形拼成了一个大长方形, AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.
(1)在图1中画出一个 45 ° 角,使点 A 或点 B 是这个角的顶点,且 AB 为这个角的一边;
(2)在图2中画出线段 AB 的垂直平分线.
为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的"您最关心孩子哪方面成长"的主题调查,调查设置了"健康安全"、"日常学习"、"习惯养成"、"情感品质"四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.
(1)补全条形统计图.
(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子"情感品质"方面的成长?
(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?
如图,过点 A ( 2 , 0 ) 的两条直线 l 1 , l 2 分别交 y 轴于点 B , C ,其中点 B 在原点上方,点 C 在原点下方,已知 AB = 13 .
(1)求点 B 的坐标;
(2)若 ΔABC 的面积为4,求直线 l 2 的解析式.
(1)解方程组: x - y = 2 x - y = y + 1 .
(2)如图, Rt Δ ABC 中, ∠ ACB = 90 ° ,将 Rt Δ ABC 向下翻折,使点 A 与点 C 重合,折痕为 DE .求证: DE / / BC .