现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成了任务. 求采用新的技术后每天能装多少台机器.
已知⊙的半径为1,以为原点,建立如图所示的直角坐标系.有一个正方形,顶点的坐标为(,0),顶点在轴上方,顶点在⊙上运动. (1)当点运动到与点、在一条直线上时,与⊙相切吗?如果相切,请说明理由,并求出所在直线对应的函数表达式;如果不相切,也请说明理由; (2)设点的横坐标为,正方形的面积为,求出与的函数关系式,并求出的最大值和最小值.
有一个,,,,将它放在直角坐标系中,使斜边在轴上,直角顶点在反比例函数的图象上,求点的坐标.
七(2)班共有50名学生,老师安排每人制作一件型或型的陶艺品,学校现有甲种制作材料36,乙种制作材料29,制作、两种型号的陶艺品用料情况如下表:
(1)设制作型陶艺品件,求的取值范围; (2)请你根据学校现有材料,分别写出七(2)班制作型和型陶艺品的件数.
如图,有一木制圆形脸谱工艺品,、两点为脸谱的耳朵,打算在工艺品反面两耳连线中点处打一小孔.现在只有一块无刻度单位的直角三角板(斜边大于工艺品的直径),请你用两种不同的方法确定点的位置(画出图形表示),并且分别说明理由. 理由是:
如图,在中,,,. (1)在方格纸①中,画,使∽,且相似比为2︰1; (2)若将(1)中称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在方格纸②中设计一个以点为对称中心,并且以直线为对称轴的图案.