要从甲,乙两名运动员中选拔一人参加2012年伦敦奥运会跳水项目,对甲乙两人进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出成绩茎叶图如图所示.(1)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员更合适?(2)若将频率视为概率,对甲运动员在今后3次的比赛成绩进行预测,记这3次成绩中高于80分的次数为,求的分布列及数学期望.
已知的图象经过点,且在处的切线方程是 (1)求的解析式; (2)点是直线上的动点,自点作函数的图象的两条切线、(点、为切点),求证直线经过一个定点,并求出定点的坐标。
已知函数。 (1)求的单调区间; (2)如果在区间上的最小值为,求实数以及在该区间上的最大值.
已知两定点,动点满足。 (1)求动点的轨迹方程; (2)设点的轨迹为曲线,试求出双曲线的渐近线与曲线的交点坐标。
在△ABC中,已知角A、B、C所对的边分别是a、b、c,边c=,且tanA+tanB=tanA·tanB-,又△ABC的面积为S△ABC=,求a+b的值。
如图,甲船在A处,乙船在A处的南偏东45°方向,距A有9n mile并以20n mile/h的速度沿南偏西15°方向航行,若甲船以28n mile/h的速度航行,应沿什么方向,用多少h能尽快追上乙船?