解二元一次方程组
如图, P 是平面直角坐标系中第四象限内一点,过点 P 作 PA ⊥ x 轴于点 A ,以 AP 为斜边在右侧作等腰 Rt Δ APQ ,已知直角顶点 Q 的纵坐标为 - 2 ,连接 OQ 交 AP 于 B , BQ = 2 OB .
(1)求点 P 的坐标;
(2)连接 OP ,求 ΔOPQ 的面积与 ΔOAQ 的面积之比.
(1)解不等式: 1 2 ( x - 1 ) > 2 + 3 x ;
(2)解方程组: x + y = 5 2 x + 3 y = 13 .
计算:
(1) | - 2 3 | - 12 + ( 1 3 ) - 2 ;
(2) ( x - 2 ) 2 - ( x + 2 ) ( x - 2 ) .
平面直角坐标系 xOy 中,点 A 、 B 的横坐标分别为 a 、 a + 2 ,二次函数 y = - x 2 + ( m - 2 ) x + 2 m 的图象经过点 A 、 B ,且 a 、 m 满足 2 a - m = d ( d 为常数).
(1)若一次函数 y 1 = kx + b 的图象经过 A 、 B 两点.
①当 a = 1 、 d = - 1 时,求 k 的值;
②若 y 随 x 的增大而减小,求 d 的取值范围;
(2)当 d = - 4 且 a ≠ - 2 、 a ≠ - 4 时,判断直线 AB 与 x 轴的位置关系,并说明理由;
(3)点 A 、 B 的位置随着 a 的变化而变化,设点 A 、 B 运动的路线与 y 轴分别相交于点 C 、 D ,线段 CD 的长度会发生变化吗?如果不变,求出 CD 的长;如果变化,请说明理由.
阅读理解:
如图①,图形 l 外一点 P 与图形 l 上各点连接的所有线段中,若线段 P A 1 最短,则线段 P A 1 的长度称为点 P 到图形 l 的距离.
例如:图②中,线段 P 1 A 的长度是点 P 1 到线段 AB 的距离;线段 P 2 H 的长度是点 P 2 到线段 AB 的距离.
解决问题:
如图③,平面直角坐标系 xOy 中,点 A 、 B 的坐标分别为 ( 8 , 4 ) , ( 12 , 7 ) ,点 P 从原点 O 出发,以每秒1个单位长度的速度向 x 轴正方向运动了 t 秒.
(1)当 t = 4 时,求点 P 到线段 AB 的距离;
(2) t 为何值时,点 P 到线段 AB 的距离为5?
(3) t 满足什么条件时,点 P 到线段 AB 的距离不超过6?(直接写出此小题的结果)