解方程:
如图,将一块直角三角形纸板的直角顶点放在处,两直角边分别与轴平行,纸板的另两个顶点恰好是直线与双曲线的交点.(1)求和的值;(2)设双曲线在之间的部分为,让一把三角尺的直角顶点在上滑动,两直角边始终与坐标轴平行,且与线段交于两点,请探究是否存在点使得,写出你的探究过程和结论.
据某气象中心观察和预测:发生于地的沙尘暴一直向正南方向移动,其移动速度(km/h)与时间(h)的函数图象如图所示.过线段上一点作横轴的垂线,梯形在直线左侧部分的面积即为h内沙尘暴所经过的路程(km).(1)当时,求的值;(2)将s随变化的规律用数学关系式表示出来;(3)若城位于地正南方向,且距地650km,试判断这场沙尘暴是否会侵袭到城.如果会,在沙尘暴发生后多长时间它将侵袭到城?如果不会,请说明理由.
如图,是等边三角形,⊙O过点B,C,且与的延长线分别交于点D,E.弦∥,的延长线交的延长线于点G.(1)求证:是等边三角形;(2)若,,求的长.
光明农场现有某种植物10 000kg,打算全部用于生产高科技药品和保健食品.若生产高科技药品,1kg该植物可提炼出0.01kg的高科技药品,将产生污染物0.1kg;若生产保健食品,1kg该植物可制成0.2kg的保健食品,同时产生污染物0.04kg.已知每生产1kg高科技药品可获利润5 000元,每生产1kg保健食品可获利润100元.要使总利润不低于410 000元,所产生的污染物总量不超过880kg,求用于生产高科技药品的该植物重量的范围.
如图,在的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(3)以(1)中的AB为边的两个凸多边形,使它们都是中心对称图形且不全等,其顶点在格点上,各边长都是无理数.