如图,△ABC中,;求AC的长.
如图,在平面直角坐标系中,抛物线 y = − x 2 + bx + c 经过点 A ( − 1 , 0 ) 和点 C ( 0 , 4 ) ,交 x 轴正半轴于点 B ,连接 AC ,点 E 是线段 OB 上一动点(不与点 O , B 重合),以 OE 为边在 x 轴上方作正方形 OEFG ,连接 FB ,将线段 FB 绕点 F 逆时针旋转 90 ° ,得到线段 FP ,过点 P 作 PH / / y 轴, PH 交抛物线于点 H ,设点 E ( a , 0 ) .
(1)求抛物线的解析式.
(2)若 ΔAOC 与 ΔFEB 相似,求 a 的值.
(3)当 PH = 2 时,求点 P 的坐标.
如图,四边形 ABCD 是菱形, ∠ BAD = 120 ° ,点 E 在射线 AC 上(不包括点 A 和点 C ) ,过点 E 的直线 GH 交直线 AD 于点 G ,交直线 BC 于点 H ,且 GH / / DC ,点 F 在 BC 的延长线上, CF = AG ,连接 ED , EF , DF .
(1)如图1,当点 E 在线段 AC 上时,
①判断 ΔAEG 的形状,并说明理由.
②求证: ΔDEF 是等边三角形.
(2)如图2,当点 E 在 AC 的延长线上时, ΔDEF 是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.
2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价 y 1 (元 ) 与月份 x ( 1 ⩽ x ⩽ 12 ,且 x 为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本 y 2 (元 ) 与月份 x ( 1 ⩽ x ⩽ 12 ,且 x 为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.
月份 x
…
3
4
5
6
售价 y 1 / 元
12
14
16
18
(1)求 y 1 与 x 之间的函数关系式.
(2)求 y 2 与 x 之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为 w (元 ) ,求 w 与 x 之间的函数关系式,哪个月份销售每千克猪肉所获得的利润最大?最大利润是多少元?
如图, ΔABC 内接于 ⊙ O , AD 与 BC 是 ⊙ O 的直径,延长线段 AC 至点 G ,使 AG = AD ,连接 DG 交 ⊙ O 于点 E , EF / / AB 交 AG 于点 F .
(1)求证: EF 与 ⊙ O 相切.
(2)若 EF = 2 3 , AC = 4 ,求扇形 OAC 的面积.
如图,四边形 ABCD 是矩形,点 A 在第四象限 y 1 = − 2 x 的图象上,点 B 在第一象限 y 2 = k x 的图象上, AB 交 x 轴于点 E ,点 C 与点 D 在 y 轴上, AD = 3 2 , S 矩形OCBE = 3 2 S 矩形ODAE .
(1)求点 B 的坐标.
(2)若点 P 在 x 轴上, S ΔBPE = 3 ,求直线 BP 的解析式.