已知直线,圆O:=36(O为坐标原点),椭圆C:=1(a>b>0)的离心率为e=,直线l被圆O截得的弦长与椭圆的长轴长相等。(I)求椭圆C的方程;(II)过点(3,0)作直线l,与椭圆C交于A,B两点设(O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在 ,求出直线l的方程,若不存在,说明理由。
(本题满分12分)求过点P(2,3),并且在两轴上的截距相等的直线方程.
(本题满分10分)如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点, 求证:BD1∥平面AEC.
一束光通过M(25,18)射入被x轴反射到圆C:x2+(y-7)2=25上. (1)求通过圆心的反射光线所在的直线方程; (2)求在x轴上反射点A的活动范围.
如图,已知两条直线l1:x-3y+12=0,l2:3x+y-4=0,过定点P(-1,2)作一条直线l,分别与l1,l2交于M、N两点,若P点恰好是MN的中点,求直线l的方程.
用斜二测画法画底面半径为2 cm,高为3 cm的圆锥的直观图.