已知函数.(1)若,求以为切点的曲线的切线方程;(2)若函数恒成立,确定实数K的取值范围;(3)证明:.
选修:坐标系与参数方程在平面直角坐标系中,直线经过点,其倾斜角是,以原点为极点,以轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程是.(Ⅰ)若直线和曲线有公共点,求倾斜角的取值范围;(Ⅱ)设为曲线任意一点,求的取值范围.
选修:几何证明选讲如图,过点作圆的割线与切线,为切点,连接,的平分线与分别交于点,其中.(Ⅰ)求证:;(Ⅱ)求的大小.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.是椭圆的右顶点与上顶点,直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)当四边形面积取最大值时,求的值.
已知函数.(Ⅰ)求函数的极值;(Ⅱ)设函数,若函数在上恰有两个不同的零点,求实数的取值范围.
如图,在多面体中,平面,,且是边长为的等边三角形,,与平面所成角的正弦值为.(Ⅰ)若是线段的中点,证明:面;(Ⅱ)求多面体的体积.