已知数列中,,(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和;(Ⅲ)(理科)若存在,使得成立,求实数的最小值。
已知为半圆的直径,,为半圆上一点,过点圆的切线,过点作于,交半圆于点.(1)证明:平分;(2)求的长.
设函数在处的切线与轴相交于点.(1)求的值;(2)函数能否在处取得极值?若能取得,求此极值;若不能,请说明理由;(3)当时,试比较与大小.
设为关于的次多项式,数列的首项,前项和为,对于任意的正整数,都成立.(1)若,求证:数列是等比数列;(2)试确定所有的自然数,使得数列能成等差数列.
如图,在地正西方向的处和正东方向的处各有一条正北方向的公路和,现计划在和路边各维修一个物流中心和,为缓解交通压力,决定修建两条互相垂直的公路和,设.(1)为减少对周边区域的影响,试确定的位置,使和的面积之和最小;(2)为节省建设成本,试确定的位置,使的值最小.
如图,在四棱锥中,底面,为直角,,,分别为的中点.(1)试证:平面;(2)设,且二面角的平面角大于,求的取值范围.