(本小题满分10分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0)、C(0,2),点B在第一象限。(1)写出点B的坐标;(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2∶3的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积。
如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.
先化简,再求值:2+(+)(-)-(-,其中=-3,=.
把下列多项式分解因式:(1)(2)(3)
计算:(1)(2) (3)
煤燃烧时产生的热量可以用于发电。光明电厂1月份用含热量为7500大卡/千克的A种煤发电(“大卡/千克”为一种热值单位),2月份改用B种煤发电,A种煤每千克的含热量比B种煤多25%,3月份又改用比较环保的含热量为5000大卡/千克的混合煤发电,这里所说的混合煤是在B种煤中加入含热量为1000大卡/千克的C种煤形成的,这样3月份每发1度电所需B种煤比2月份少0.02千克。1月、2月和3月每发1度电所需要的总热量相同。(1)求B种煤每千克的含热量;(2)求该电厂3月份每发1度电所需的B种煤和C种煤各多少千克?(3)若B种煤的成本为每吨800元,C种煤的成本为每吨200元,若该电厂四月份仍用混合煤发电,且每发一度电所需要的总热量与三月份相同,但要求所消耗的C种煤的数量不低于0.12千克,不超过0.15千克。试求:光明电厂四月份每发一度电所需的燃料成本最少是多少元?最多是多少元?