若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是 ;
一位小朋友在粗糙不打滑的“ Z ”字形平面轨道上滚动一个半径为 10 cm 的圆盘,如图所示. AB 与 CD 是水平的, BC 与水平面的夹角为 60 ∘ ,其中 AB = 60 cm , CD = 40 cm , BC = 40 cm ,请你作出该小朋友将圆盘从 A 点滚动到 D 点其圆心所经过的路线的示意图,此路线的长度为_____.
如图,△ ABC 中, MN / / BC 交 AB AC 于 M , N , MN 与△ ABC 内切圆相切,若 △ ABC 周长为 12 ,设 BC = x , MN = y ,则 y 与 x 的函数解析式为_____.(不要求写自变量 x 的取值范围).
在 △ ABC 中,若 O 为 BC 边的中点,则必有: A B 2 + A C 2 = 2 A O 2 + 2 B O 2 成立.依据以上结论,解决如下问题:如图,在矩形 DEFG 中,已知 DE = 4 , EF = 3 ,点 P 在以 DE 为直径的半圆上运动,则 P F 2 + P G 2 的最小值为_____.
如图,一根圆柱形木棒的横截面圆的半径均为 1 ,则捆扎这 7 根木棒一周的绳子长度为_____.
如图,直角坐标系中直线 AB 交 x 轴, y 轴于点 A 4 , 0 与点 B 0 , - 3 ,现有一半径为 1 的动圆的圆心位于原点处,以每秒1个单位的速度向右作平移运动,则经过_____ s 后动圆与直线 AB 相切.