已知直线l的参数方程为(t为参数),曲线C的参数方程为为参数).(I )已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;(II )设点Q是曲线C上的一个动点,求点Q到直线l的距离的最小值与最大值.
如图在平面直角坐标系中点均在单位圆上已知点在第一象限的横坐标是点在第二象限点 (1)设求的值; (2)若为正三角形求点的坐标
已知函数f(x)=x(x+a)-lnx,其中a为常数. (1)当a=-1时,求f(x)的极值; (2)若f(x)是区间内的单调函数,求实数a的取值范围; (3)过坐标原点可以作几条直线与曲线y=f(x)相切?请说明理由.
已知A、B是椭圆上的两点,且,其中F为椭圆的右焦点. (1)当时,求直线AB的方程; (2)设点,求证:当实数变化时,恒为定值.
(本小题12分)设等差数列{an}的前n项和为Sn,已知S3=a6,S8=S5+21. (1)求Sn的表达式; (2)求证:.
如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60º,又PA⊥底面ABCD,E为BC的中点. (1)求证:AD⊥PE; (2)设F是PD的中点,求证:CF∥平面PAE.