在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)在平面内是否存在一点,使得过点有无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长的倍与直线被圆截得的弦长相等?若存在,求出所有满足条件的点的坐标;若不存在,请说明理由.
(1) 求函数()的最大值与最小值; (2) 已知函数(是常数,且)在区间上有最大值,最小值, 求实数的值.
已知. (1) 求函数的定义域; (2) 试判别函数的奇偶性,并说明理由;
已知奇函数定义域是,当时,. (1) 求函数的解析式; (2) 求函数的值域; (3) 求函数的单调递增区间.
设函数 (1)求的值;(2)若,求
已知集合,集合. (1) 若,求实数的取值范围; (2) 若,求实数的取值范围.