在⊿ABC中,AB>AC,AD是∠BAC的平分线,AD的垂直平分线EF交BC的延长线于E,交AD于F.①.求证:∠B=∠EAC; ②. .若设CE=,DE=b,BE=c,你能根据这些条件判断关于的一元二次方程的根的情况吗?说明理由.
分解因式:
我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等. 那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等. 对于这两个三角形均为钝角三角形,可证它们全等(证明略). 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1. 求证:△ABC≌△A1B1C1. (请你将下列证明过程补充完整)证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1. 则∠BDC=∠B1D1C1=90°,∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1. ______________________________。(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.
有一块不规则的鱼池,下面是两位同学分别设计的能够粗略地测量出鱼池两端A、B的距离的方案,请你分析一下两种方案的理由. 方案一:小明想出了这样一个方法,如图①所示,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,测得DE的长就是AB的长. 你能说明一下这是为什么吗?方案二:小军想出了这样一个方法,如图②所示,先在平地上取一个可以直接到达鱼池两端A、B的点C,连结AC并延长到点D,使CD=CA,连结BC并延长到E,使CE=CB,连结DE,量出DE的长,这个长就是A、B之间的距离. 你能说明一下这是为什么吗?