在中,内角对边的边长分别是,已知,.(Ⅰ)若的面积等于,求;(Ⅱ)若,求的面积.
已知函数 f ( x ) = n x - x n , x ∈ R ,其中 n ∈ N * , n ≥ 2 . (Ⅰ)讨论 f ( x ) 的单调性; (Ⅱ)设曲线 y = f ( x ) 与 x 轴正半轴的交点为 P ,曲线在点 P 处的切线方程为 y = g ( x ) ,求证:对于任意的正实数 x ,都有 f ( x ) < g ( x ) ; (Ⅲ)若关于 x 的方程 f ( x ) = a ( a 为实数)有两个正实根 x 1 , x 2 ,求证: x 2 - x 1 < a 1 - n + 2
已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左焦点为 F ( - c , 0 ) ,离心率为 3 3 ,点M在椭圆上且位于第一象限,直线 F M 被圆 x 2 + y 2 = b 2 4 截得的线段的长为 c , F M = 4 3 3
(Ⅰ)求直线 F M 的斜率; (Ⅱ)求椭圆的方程; (Ⅲ)设动点 P 在椭圆上,若直线 F P 的斜率大于 2 ,求直线 O P ( O 为原点)的斜率的取值范围.
已知数列 a n 满足 a n + 2 = q a n ( q 为实数 , 且 q ≠ 1 ), n ∈ N * , a 1 = 1 , a 2 = 2 ,且 a 2 + a 3 , a 3 + a 4 , a 4 + a 5 成等差数列. (Ⅰ)求 q 的值和 a n 的通项公式; (Ⅱ)设 b n = log 2 a 2 n a 2 n - 1 , n ∈ N * ,求数列 b n 的前 n 项和.
如图,在四棱柱 A B C D - A 1 B 1 C 1 D 1 中,侧棱 A 1 A ⊥ 底面 A B C D , A B ⊥ A C , A B = 1 , A C = A A 1 = 2 , A D = C D = 5 ,且点M和N分别为 B 1 C 和 D 1 D 的中点.
(Ⅰ)求证: M N ∥ 平面 A B C D ; (Ⅱ)求二面角 D 1 - A C - B 1 的正弦值; (Ⅲ)设 E 为棱 A 1 B 1 上的点,若直线 N E 和平面 A B C D 所成角的正弦值为 1 3 ,求线段 A 1 E 的长
为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (Ⅰ)设 A 为事件"选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会"求事件 A 发生的概率; (Ⅱ)设 X 为选出的4人中种子选手的人数,求随机变量 X 的分布列和数学期望.