将如图1的直角梯形ABEF(图中数字表示对应线段的长度)沿直线CD折成直二面角,连结EB、FB、FA后围成一个空间几何体如图2所示,(1)求异面直线BD与EF所成角的大小;(2)求二面角D—BF—E的大小;(3)求这个几何体的体积.
已知函数为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为 (1)求的值; (2)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
已知对任意实数恒成立;Q:函数有两个不同的零点. 求使“P∧Q”为真命题的实数m的取值范围.
在△ABC中,角A,B,C所对的边分别为a,b,c.已知,且满足. (1)求角A的大小; (2)若||+||=||,试判断△ABC的形状.
14分)已知椭圆中心在原点,焦点在x轴上,一个顶点为A(0,-1),且其右焦点到直线x-y+=0的距离为3.(I)求椭圆的方程; (II)是否存在斜率为k(k≠0)的直线l,使l与已知椭圆交于不同的两点M、N, 且|AN|=|AM|?若存在,求出k的取值范围;若不存在,请说明理由.
(I)求证数列; (II)求数列; (III)。