在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF. 连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t. ⑴ 求tan∠FOB的值;⑵用含t的代数式表示△OAB的面积S;⑶是否存在点C,使以B,E,F为顶点的三角形与△OFE相似,若存在,请求出所有满足要求的B点的坐标;若不存在,请说明理由.
已知P为正方形ABCD的对角线AC上任意一点,求证:PB=PD.
先化简,再求值:,其中
矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()
(本小题满分10分)已知a、b、c在数轴上的位置如图所示, (1)试确定b+c,c-b的符号 (2)化简:
(本小题满分10分)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?