如图,在正三棱柱中,是的中点,是线段上的动点,且(1)若,求证:;(2) 求二面角的余弦值;(3) 若直线与平面所成角的大小为,求的最大值.
设 求证:
已知曲线 在点 处的切线 平行直线,且点在第三象限.(Ⅰ)求的坐标; (Ⅱ)若直线 , 且 也过切点 ,求直线的方程.
已知圆,直线过定点.(1)求圆心的坐标和圆的半径;(2)若与圆C相切,求的方程;(3)若与圆C相交于P,Q两点,求三角形面积的最大值,并求此时的直线方程.
已知圆,交于A、B两点;(1)求过A、B两点的直线方程;(2)求过A、B两点,且圆心在直线上的圆的方程.
如图,四边形是正方形,为对角线和的交点,,为的中点;(1)求证:;(2)求证:.