(本小题满分16分) [已知数列满足,.(1)求数列的通项公式;(2)若对每一个正整数,若将按从小到大的顺序排列后,此三项均能构成等差数列, 且公差为.①求的值及对应的数列.②记为数列的前项和,问是否存在,使得对任意正整数恒成立?若存在,求出的最大值;若不存在,请说明理由.
在椭圆=1内有一个内接△ABC,它的一条边BC与长轴重合,A在椭圆上运动,试求△ABC重心的轨迹.
在面积为1的△PMN中,tan∠M=,tan∠N=-2,建立适当坐标系,求出以MN为焦点且过P点的椭圆方程.
方程=1表示焦点在y轴上的椭圆,求实数m的取值范围.
已知椭圆的中心在原点,且经过点P(3,0),a=3b,求椭圆的标准方程.
椭圆的中心在原点,对称轴为坐标轴,椭圆短轴的一个顶点B与两个焦点F1、F2组成的三角形的周长是4+2,且∠F1BF2=,求椭圆的方程.