(本小题满分16分) [已知数列满足,.(1)求数列的通项公式;(2)若对每一个正整数,若将按从小到大的顺序排列后,此三项均能构成等差数列, 且公差为.①求的值及对应的数列.②记为数列的前项和,问是否存在,使得对任意正整数恒成立?若存在,求出的最大值;若不存在,请说明理由.
在如图所示的几何体中,四边形是等腰梯形,∥,,.在梯形中,∥,且,⊥平面. (Ⅰ)求证:; (Ⅱ)若二面角为,求的长.
已知圆的圆心在直线上,且与轴交于两点,. (Ⅰ)求圆的方程; (Ⅱ)求过点的圆的切线方程; (Ⅲ)已知,点在圆上运动,求以,为一组邻边的平行四边形的另一个顶点轨迹方程.
如图,在矩形中,点为边上的点,点为边的中点, ,现将沿边折至位置,且平面平面. (Ⅰ)求证:平面平面; (Ⅱ)求四棱锥的体积.
已知椭圆:的左、右焦点分别为,离心率为,点在椭圆上. (Ⅰ)求椭圆的方程; (Ⅱ)设过点的直线与椭圆相交于两点,若的中点恰好为点,求直线的方程.
三棱柱中,侧棱与底面垂直,,,是的中点,是与的交点. (Ⅰ)求证:平面; (Ⅱ)求证:平面.