(本小题满分16分) [已知数列满足,.(1)求数列的通项公式;(2)若对每一个正整数,若将按从小到大的顺序排列后,此三项均能构成等差数列, 且公差为.①求的值及对应的数列.②记为数列的前项和,问是否存在,使得对任意正整数恒成立?若存在,求出的最大值;若不存在,请说明理由.
已知在直三棱柱ABC—A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1. 求证:(1)BC1⊥AB1; (2)BC1∥平面CA1D.
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点. 求证: (1)AM∥平面BDE; (2)AM⊥平面BDF.
如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形, ∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点. 求证: (1)DE∥平面ABC; (2)B1F⊥平面AEF.
如图所示,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90°, AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明: (1)PA⊥BD; (2)平面PAD⊥平面PAB.
如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点. 求证:MN∥平面A1BD.