甲、乙两地间铁路长2400千米, 经技术改造后, 列车实现了提速. 提速后比提速前速度增加20千米/时, 列车从甲地到乙地行驶时间减少4小时. 已知列车在现有条件下安全行驶的速度不超过140千米/时. 请你用学过的数学知识说明这条铁路在现有条件下是否还可以再次提速?
如图,直线y=kx+b与反比例函数只有一个交点A(1 , 2),且与x轴、y轴分别交于B,C两点,AD垂直平分OB,垂足为D,(1)求点B的坐标和m的值;(2)求直线解析式
如图,在平面直角坐标系中,过格点A,B,C作一圆弧,[(1)在图中作出该弧的圆心O,则点O的坐标是( , );(2)作出过点B且与该弧相切的直线;(原创)
已知a=(),b="2cos" 45-,c=(2011-),d=(1)请化简这四个数;(2) 从这四个数中任取两个,积为无理数的概率是多少。
已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A、B的坐标:(3)根据函数图像,求不等式>2x-1的解集;(4)在(2)的条件下, x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
如图1,已知,CE是Rt△ABC的斜边AB上的高,点P是CE的延长线上任意一点,BG⊥AP,求证:(1)△AEP∽△DEB(2) CE2=ED·EP若点P在线段CE上或EC的延长线上时(如图2和图3),上述结论CE2=ED·EP还成立吗?若成立,请给出证明;若不成立,请说明理由.(图2和图3挑选一张给予说明即可)